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Lerner’s career and his work on catalytic antibodies 
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Key Professional Appointments: 
• 1968 Associate, Wistar Institute, 
Pennsylvania 
• 1970 Associate, Scripps Clinic RI 
• 1982 Chairman, Scripps Clinic RI 
• 1987 Director, Scripps Clinic RI 
• 1988 First President, TSRI 

Selected Awards: 
• 1991 Arthur C. Cope Scholar 
• 1994/95 Wolf Prize 
• 1996 CA Scientist of the Year 
• 2002 Scientist of the Year, ARCS 
• 2002 UC President’s Medal 
• 2012 Prince of Asturis 
• As of 2007, 67 patents, 403 papers 

Board Seats: 
5AM Ventures, Acro, Bay City Capital, 
Dyadic, Intra-Cellular Therapies, Kraft 
Foods, OPKO Health, Optimer, 
Sequenom, Sorrento Therapeutics 

Illustrious career spanning >40 years 

Chronology: 
1.  Plasma membrane proteins, 1971–1981 
2.  Antibodies and specificity; synthetic peptides, 1981– 
3.  Catalytic antibodies, 1986– 
4.  Combinatorial antibody libraries, 1991– 
5.  Cis-9, 10-octadecenamide, 1994–1997 
6.  Ozone in human disease, 2002–2006 

Collaborators at Scripps: 
Peter Schultz, Kim Janda, Carlos Barbas, Dale Boger, Ben Cravatt, 
Ian Wilson, Frank Chisari, Peter Wright, and many more. 

Biographical Info: 
• Northwestern BSc, 1956–
1959 
• Stanford MD, 1959–1964 
• Stanford hospital 
Internship, 1964–1965 
• Scripps Clinic postdoc, 
1965–1968 
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Wolf Prize: “for converting antibodies into enzymes, thus permitting 
the catalysis of chemical reactions considered impossible to achieve 
by classical chemical procedures” (joint award with Schultz) 

Lerner was the pioneer of catalytic antibodies, and over the next two 
decades, he developed a strategy to accelerate and catalyze 
chemical reactions for which traditional methods are not efficient. 

This presentation only covers until 2007, 
and focuses on catalytic antibodies. 
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Study of immunochemistry – the branch of biochemistry concerned with the immune response and immune system 

Catalytic Antibodies 

What are antibodies? 
• Also known as immunoglobins (Igs) 
• Protein used by the immune system to identify and neutralize 
foreign objects 
• They do so by recognizing the antigen, which is the unique part of 
the foreign target 
• Made by B-lymphocytes 

Source: Wikipedia 

Advantages of antibodies as catalysts, Science 1991, 252, 659 
It is possible to tap the cells of the immune system to produce 
antibodies that bind to any molecule of interest, with high affinity and 
selectivity. 
1.  Enormous molecular diversity of immune system makes 

antibodies highly specific 
2.  Structural framework is the same – makes antibodies easy to 

purify, and easy to conduct structural studies, biochemical 
engineering, bacterial expression 

3.  Can function in organic solvents by solubilization in reverse 
micelles 

4.  Can be immobilized – and still retains activity and specificity in 
organic solvents 

Regions of an antibody: 
1.  Fab (fragment, antigen binding) 
2.  Fc (fragment, crystallizable) 
3.  Heavy chain 
4.  Light chain 
5.  Antigen binding site 
6.  Hinge regions 

First examples of antibody catalyzed 
chemical reaction were by Richard Lerner 
and Peter Schultz in a back-to-back 
publication in Science 1986, 234, 1566 
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Principles 
• Basic principle of enzyme catalysis: strong binding interactions are required to reduce the energy barriers along 
the chemical reaction pathway Typically lowers energy of intermediate. 
• Transition-state stabilization, proximity effects, general acid and base catalysis, electrophilic and nucleophilic 
catalysis, strain etc. are used. 

Hapten 
• Definition: Small molecule that can elicit an immune response only when attached to a large carrier (e.g., protein) 
• Use of hapten elicits desired antibodies 
• Hapten thereafter behaves as inhibitor in the catalytic system 

Process 
“Bait and switch” – the hapten serves as “bait” for attracting catalytic functions in the induction of the antibody; it is 
then “switched” for the substrate. This can be used even for cofactor approaches. 

Strategies 
1.  Using antibodies to stabilize negatively and positively charge transition states (Pauling) 
•  TS mimic – both stereo (geometry) and electronically (developing charge) 
2.  Using antibodies as entropic traps 
3.  Generating antibodies with catalytic groups and cofactors in their combining sites 
•  Chemical cofactor is non-covalently bound by antibody together with substrate in order to provide chemical 

reactivity in antibody binding pocket.  
Science 1991, 252, 659 

ID and purification 
Sometimes the antibodies are identified by their specific reaction with a potential ester substrate that releases a 
fluorescent product. More commonly now by ELISA. Inject into mice to produce ascites fluid, and isolated/purified. 
Monoclonal only (made by same immune cells). Verify antibody by PAGE. 

Generating catalytic antibodies  



Richard Lerner Kelvin Chan Feb 28 2014 

Many classes of reactions have been demonstrated by Lerner: 
1.  Hydrolytic reactions (16 publications) 

a)  Ester hydrolysis 
b)  Amide hydrolysis 
c)  Enol ester hydrolysis 
d)  Enol ether hydrolysis (including glycosidic bond hydrolysis) 
e)  Phosphate triester hydrolysis 

2.  Carbon-carbon and carbon-heteroatom bond forming reactions (29 publications) 
a)  C–N Amide formation 
b)  C–O Ring closure 
c)  C–O Epoxidation 
d)  C–C Diels Alder reaction 
e)  C–C Cationic cyclizations 
f)  C–C Rearrangement reactions 
g)  C–C Aldol reactions (and retro-aldol) 
h)  C–C Robinson annulation reactions 

3.  Others (3 papers) 
a)  Syn elimination from acyclic 
b)  Oxidation of water 

*papers referenced do not include mechanistic studies 
Selected reviews: Science 1991, 252, 659; ACR 1993, 26, 391; Science 1995, 269, 1835;  

 ACR 1997, 30, 115; ACIE 2002, 41, 4427 

Transformations catalyzed by catalytic antibodies 

4 
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1a) Ester hydrolysis 
1. Hydrolytic reactions 

hapten                   substrate                              products 
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1b) Amide hydrolysis – kinetically most difficult hydrolysis reaction 
1. Hydrolytic reactions 

hapten                                   substrate                            products 

Science 1988, 241, 1188 

6 

O2N

H
N
P

NHCOR
O-

O

O2N

H
N

NHCOR
O

O2N

NH2 HO

NHCOR

Science 1989, 243, 1184 
*cofactor instead of 
TS mimic 

1c) Enol ester hydrolysis 
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ACIE 1991, 30, 1711 
JACS 1992, 114, 2257 
JACS 1993, 115, 3909 
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1e) Phosphate triester hydrolysis 
1. Hydrolytic reactions 

hapten                                   substrate                            products 
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2a) C–N Amide formation 
2. C–C and C–X bond forming reactions 
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2b) C–O Ring closure (violation of Baldwin’s rules) 
2. C–C and C–X bond forming reactions 

hapten               substrate                                              products 
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Science 1993, 259, 490 
JACS 1995, 117 2659 

2c) C–O Epoxidation 
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2d) C–C Diels-Alder 

JACS 1994, 116, 803 
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2e) C–C Cationic cyclization 
2. C–C and C–X bond forming reactions 

hapten               substrate                                              products 
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Science 1994, 264, 1289 
Nature 1996, 379, 326 
JACS 1995, 117, 2367 
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2e) C–C Cationic cyclization 
2. C–C and C–X bond forming reactions 

hapten                    substrate                                       products 

JACS 2000, 122, 40 

JACS 1997, 119, 5993 
ACIE 1999, 38, 1743 
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2. C–C and C–X bond forming reactions 
hapten                          substrate                                products 
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2g) C–C Aldol reactions (*many with C. F. Barbas) 
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2g) C–C Aldol reactions (*many with C. F. Barbas) 
2. C–C and C–X bond forming reactions 

hapten                          substrate                        products 
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CEJ 1998, 4, 881 

2h) C–C Robinson Annulation 
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3a) Syn elimination 
3. Other reactions 

hapten                          substrate                               products 
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JACS 1994, 116, 6013 

3b) Oxidation of water 
Antibodies, regardless of source or antigenic specificity, generate H2O2 from 1O2* (singlet oxygen) 
PNAS 2000, 97, 10930 
Science 2001, 293, 1806 
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